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Abstract

Accurate prediction of protein-ligand binding pockets is a critical task in protein
functional analysis and small molecule pharmaceutical design. However, the flex-
ible and dynamic nature of proteins conceal an unknown number of potentially in-
valuable “cryptic” pockets. Current approaches for cryptic pocket discovery rely
on molecular dynamics (MD), leading to poor scalability and bias. Even recent
ML-based cryptic pocket discovery approaches require large, post-processed MD
datasets to train their models. In contrast, this work presents “Efficient Sequence-
based cryptic Pocket prediction” (ESP) leveraging advanced Protein Language
Models (PLMs), and demonstrates significant improvement in predictive efficacy
compared to ML-based cryptic pocket prediction SOTA (ROCAUC 0.93 vs 0.87).
ESP achieves detection of cryptic pockets via training on readily available, non-
cryptic-pocket-specific data from the PDBBind dataset, rather than costly simula-
tion and post-processing. Further, while SOTA’s predictions often include positive
signal broadly distributed over a target structure, ESP produces more spatially-
focused predictions which increase downstream utility.

1 Introduction

The Transformer architecture (Vaswani et al., 2023) arose in the context of machine translation,
and also enables SOTA applications in text-classification (Devlin et al., 2019) and text-generation
(Radford et al., 2018). Large Language Models (LLMs) scale the Transformer using more blocks,
larger embeddings, and larger datasets to achieve unprecedented performance on a variety of tasks
in the zero-shot setting and now exhibit sophisticated knowledge of semantic relationships (Brown
et al., 2020).

A core hypothesis of structural biology is that structure and function arise from specific sequences
of amino acids, in the same way that meaning in natural langauge arises from specific sequences of
words. Since Transformers are agnostic to the meaning of semantic tokens, so-called Protein Lan-
guage Models (PLMs) were trained using the same Masked Language Model pre-training objective
as Devlin et al. (2019). Rives et al. (2019) found that PLMs can not only learn key differences
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between amino acids themselves, but also distinguish which proteins have similar structures yet dif-
ferent sequences in the zero-shot setting. Rao et al. (2020) showed that PLMs learn what structural
biologists call contact maps in their self-attention coefficients, with a linear relation between pre-
plexity and “contact precision.” Lin et al. (2022) found that scaling a PLM improves performance
on the aforementioned, and enables structure prediction competitive with AlphaFold2 (Jumper et al.,
2021). These results motivate further investigating the fronteirs of what PLMs can power.

For example, Singh et al. (2023) used PLMs and molecular fingerprints to conduct virtual screening
that successfully identified sub-nanomolar binders. The method was simple: (1) a protein’s PLM
[CLS] embedding and ligand’s molecular fingerprint (Glem et al., 2006) were projected into the
same dimensional space using a single linear layer followed by ReLU, (2) cosine similarity was
calculated, and (3) the projectors were updated via contrastive learning. While this application is
interesting, the real significance is that information sufficient for this purpose could be embedded
into a single summary token by a PLM.

Small molecule pharmaceutical discovery often leverages insight from structural biology data, and
PLMs offer a new window into this domain. Specifically, knowledge of where compounds, or “lig-
ands,” bind to a protein of interest is of critical importance, providing a starting point for medicinal
chemists to design better molecules. This work focuses on the use of PLMs to identify hard-to-
find, or “cryptic,” protein pockets from sequence alone, and in particular the following three specific
aims: (1) explore the relevance of SOTA PLMs for sequence-based cryptic protein-ligand binding
pocket prediction, (2) determine the extent to which multi-task learning with secondary structure
prediction (SSP) enhances cryptic pocket prediction, and (3) offer a specific model that redefines
SOTA for cryptic protein pocket prediction. Toward these ends we find that: (1) many PLMs enable
predictive efficacy beyond previous SOTA cryptic pocket prediction algorithms, and Ankh-Large
(Elnaggar et al., 2023) and ESM-2 15B enable top AUC and APS, respectively, (2) multi-task learn-
ing with SSP enhances predictive efficacy for many cases, and (3) our ESP model outperforms the
SOTA ML-based cryptic pocket prediction algorithm, PocketMiner (PM) (Meller et al., 2023), by a
significant margin (ROCAUC 0.93 vs 0.87) on its own test set.

2 Background

2.1 Impact of cryptic pocket prediction to small molecule drug design

Cryptic protein-ligand binding pocket prediction is a high impact task because successful predictions
can form the basis for novel structure-based small molecule pharmaceutical development programs.
“Cryptic” or “non-obvious” pockets are so named because of the difficultly in recognizing such
ligandable pockets with conventional tools. Whereas rigid, highly-conserved active sites and other
non-cryptic pockets can commonly be identified by a structural biologist in receptor or enzyme
protein structures determined via x-ray crystallography, cryptic pockets generally cannot. Instead,
they are often discovered accidentally in experimentally solved protein structures in complex with
wet-lab screening or fragment screening hits, or through extensive molecular dynamics (MD) simu-
lations using existing structures. Cryptic pocket discovery on a validated protein target can motivate
resource allocation to produce a novel, first-in-class medication. New binding sites for validated
targets enable development of new chemistry with potential for improvement in efficacy, dosing
regimen, and reduction of side-effects. Cryptic pocket prediction, and ligand binding pocket predic-
tion in general, also has impact when engaging new targets for the first time. Because new targets
may not have any reference compounds known to engage it, virtual screening and de novo molecular
generation against a putative pocket may be required to find hits that medicinal chemists can turn
into leads and eventually drug candidates.

2.2 Non-Cryptic Pocket Identification Algorithms

Computational identification of ligand binding sites on protein surfaces is a field with many mature
tools, each with their own capabilities and limitations. They evaluate structures at the atomic level,
the residue level, or arbitrary grid points in space. These methods perform best when there is a
cavity on the protein surface that looks similar in volume and chemistry to common, known binding
sites. They tend not to elucidate cryptic pockets because they only see snapshots of geometric and
chemical properties. Dynamic properties of proteins that might correlate with or imply a propensity
for cryptic pockets to form are not taken into account.
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Two notable examples of methods of this type are LIGSITE (Hendlich et al., 1997) and fpocket
(Le Guilloux et al., 2009). LIGSITE scans a protein for concave volumes and reports cavities above
a minimum size. Fpocket uses Voronoi tessellation to define alpha spheres which are then clustered
prior to ranking clusters and scoring pockets. While dated by ML standards, these two algorithms
are still relevant in compulational chemistry and were used during label generation by the SOTA
ML cryptic pocket algorithm discussed below. For a review of non-ML and ML pocket prediction
approaches developed over the past three decades see Zhao et al. (2020) and Di Palma et al. (2023).

2.3 ML-Based, Cryptic Pocket Identification Algorithms

Cryptic pocket identification algorithms aim to find hard-to-find areas of a protein where a drug can
bind and achieve a disease-modifying effect. Simple geometric calculations to find concave surfaces
will not suffice because cryptic pockets in experimentally-solved structures are generally not in a
shape that allows a drug to bind. Cryptic pockets tend to form by protein atom movement opening
a pocket, or bringing distal parts close enough to form a pocket. Since the flexibility of a protein
enables these phenomena, MD is a tool for finding cryptic pockets. Unfortunately, scaling MD for
this purpose is time consuming and cost prohibitive.

The SOTA ML approach to cryptic pocket prediction is PocketMiner (PM). It uses a protein’s back-
bone atom coordinates and sequence to predict whether or not each residue is associated with the
formation of a cryptic pocket. It does not however use information from SOTA PLMs. Its use case
is to feed in protein structures absent any bound ligand, and then predict where cryptic pockets are
most likely to form. PM was trained using labels generated by LIGSITE, fpocket, and conditional
characterization of MD trajectories. It achieves improved accuracy and orders-of-magnitude im-
provement in inference compute cost compared to its predecessor CryptoSite (Cimermancic et al.,
2016), which works best when MD simulations are executed at inference time. The small num-
ber of structures used to generate training data were enough to produce meaningful predictions on
structures that are completely different from the training structures. Also, it achieves this with only
736,155 trainable parameters and no PLM.

3 Methods

3.1 Datasets

Three datasets form the foundation for this work: (1) PDBBind (Su et al., 2019), (2) the ESM-2
SSP dataset, and (3) the PM validation and test sets. Training is conducted using the sequences and
labels: (1) derived from the PDBBind dataset, and (2) directly from the ESM-2 SSP dataset. The
PM validation and test sets serve those functions herein.

Since significant curation effort has been invested in the PDBBind dataset, we use it without further
curation except for omission of proteins with synthetic residues. This results in a dataset of 17,986
complexes. Each protein’s amino acid sequence is extracted from its structure file. The subject of
missing residues is left to future work, rather we wish to test if PLMs can enable bypassing this step
and still achieve useful results. We assign positive labels to any residue containing at least one atom
within 6 Å of any ligand atom (Eguida & Rognan, 2022). We assign negative labels everywhere
else. The average sequence length is 292, total number of positive labels is 495,482, and total
number of labels is 5,254,922. The ESM-2 SSP dataset is used without modification, however since
it is significantly larger than the PDBBind dataset we only use the 12,026 samples obtained using the
“cv partition=0” and “split=train” options. The PM validation and testing data are used in the same
way as by the PM authors in their work. Residues assigned an “unknown” or “unclassified” label are
masked during loss calculation. This means that negative labels are only from rigid structures where
the PM authors are confident no pocket can form, and positive labels are only associated with close
proximity to ligands in resolved protein/ligand complexes. The validation and testing sets have 436
and 563 positive and 375 and 1,283 negative labels, respectively.

Data leakage is possible when identical sequences are present in the training set and either the vali-
dation or testing set. Because the PDB IDs are known for the PM validation and test sets, the authors
used the RCSB APIs (Rose et al., 2021) to identify sets of structures in the PDBBind dataset that
are within arbitrary seqeuence identity thresholds to the the PM validation and test structures. Se-
quence identity thresholds of 100%, 95%, 90%, 70%, 50%, and 30% were used. At training time,
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the structures within the desired identity threshold to the validation and test structures are removed
from the training set. In addition to data leakage prevention, training using different sequence iden-
tity thresholds offers insight into generalizability of ESP and dependence of generalizability on the
specific PLM used. The number of structures from the RCSB PDB database (Berman et al., 2000),
PDBBind dataset, and PBDBind structures removed from the training dataset at different levels of
sequence identity are reported in Table 6 (see Appendix).

3.2 Architecture

Protein sequences extracted from PDBBind are input without modification into several PLMs:
Ankh-Large, ESM-2 15B, ESM-2 3B, ProtT5-XL, and ProtBert. Fine-tuning is not executed; em-
beddings are calculated and stored, and then used to train a prediction head using the PDBBind
dataset and optionally the ESM-2 SSP dataset. For ProtT5-XL, the average embedding is used as
a pseudo-[CLS] token, as suggested by Ni et al. (2021). PLM embeddings are then input into fol-
lowing prediction heads: Logistic regression (LR), multi-layer perceptrion (MLP) with one hidden-
layer, a single layer of multi-headed-attention (MHA) not using the PLM’s output [CLS] embed-
dings, and a single layer of multi-headed-attention (MHA) using the PLM’s output [CLS] embed-
dings. The number of learnable parameters per prediction head for each PLM in the single-task
setting is presented in Table 7 (see Appendix). The output of the prediction head is a residue-level
cryptic pocket score in the single-task setting, and also SSP class likelihood in the multi-task setting.

3.3 Training Process

Training is executed using the PDBBind input data and labels derived via proximity to the ligand
using binary cross entropy loss. When training concurrently with the SSP data, loss for SSP is
evaluated via cross entropy loss. The total loss is a sum of the two, and a coefficient of SSP loss
is used to adjust the relative significance of each loss. For results presented here, the SSP loss
coefficient used is 1.0. SGD has been used with no weight decay and a momentum value of 0.9.

Results for each specific PLM, prediction head, and task configuration are reported for the best
model from 7 trials. Each trial is limited to a maximum of 40 epochs of training. We define a Figure
of Merit (FOM) using the validation APS and AUC as shown in Eq 1. Several early stopping criteria
have been implemented: detection of any NaN FOM, identical FOM for two consecutive epochs,
or FOM increasing beyond 105% of an individual trial’s lowest FOM. This strategy was chosen for
convenience, since occurrance of any of these conditions tended not to lead to meaningful results.

FOM = 2− APS − AUC (1)

4 Result

4.1 Performance at the 30% Sequence Identity Limit

For the first set of results, training samples having greater than 30% sequence identity with any
validation or testing sample have been removed. This reduces data leakage in the structure domain,
because samples with relatively low sequence identity can still be structurally similar. Amino acids
can sometimes be changed without altering the overall structure or function of the protein, for exam-
ple, if the amino acids are very similar or solvent exposed. While structural similarity can occur even
when sequence identity is below 30%, results at the 30% threshold are still a meaningful measure
of generalization ability. Sensistivity to this threshold will be addressed in the next section. Further
detail is provided in the Methods section.

Figure 1 shows the best prediction head and task regime for the model with the highest APS and
AUC for each PLM. Ankh-Large enables the best AUC of 0.926, and the best AUC for all prediction
head classes except MLP. ESM-2 15B enables the best APS of 0.865, and the best MLP in both
APS and AUC. ESM-2 15B also enables the best APS for MHA without [CLS] tokens. MHA using
[CLS] tokens is the prediction head most common in Figure 1a, and PDBBind-label-only the most
common training regime. MLP was the top ESM-2 15B prediction head in terms of AUC, and for
ProtT5-XL on both APS and AUC. Multitask training using SSP resulted in top models for half of
top MLPs, and was less common for either MHA architecture.

4



SOTA, PocketMiner, achieves 0.81 and 0.87 APS and AUC on the test set, respectively. Ankh-Large,
ESM22 15B, ESM-2 3B, and ProtT5-XL all produced prediction heads of each class (MLP, MHA
with [CLS], and MHA without [CLS]) that outperformed SOTA in either or both of APS and AUC.
No prediction head atop ProtBert outperformed SOTA on either APS or AUC.

Ankh-Large has an embedding size of 1536, compared to 5120 and 2560 for ESM-2 15B and ESM-2
3B, respectively. Both ProtT5-XL and ProtBert have an embedding size of 1024. The benefit of the
higher APS achievable via ESM-2 15B is offset by significantly higher cost in terms of calculating
the embeddings and training the prediction head. When a high AUC predictor is more appropriate,
then Ankh-Large vastly outperforms both ESM-2 variants when computational cost is taken into
account. If computational cost is the highest prority, users may wish to use ProtT5-XL embeddings
with MLP prediction heads.

(a) Best regime per PLM and metric. (b) Best MLP per PLM and metric.

(c) Best MHA without CLS per PLM and metric. (d) Best MHA per PLM and metric.

Figure 1: Figures 1 (a)-(d) show APS and AUC for the best prediction head for each PLM overall,
and for each prediction head class. Text above each bar indicates the best in class prediction head.
The integers indicate width of MLP or attention heads of MHA. PDB or SSP indicate the single- or
multi-task setting, respectively.

4.1.1 Ankh-Large at the 30% Sequence Identity Limit

Performance metrics for ESP using Ankh-Large are summarized in Table 1. Table elements in bold
indicate the best performance on either APC or AUC within a class of prediction heads. The pre-
diction heads classes are: LR/MLP, MHA without [CLS] tokens, MHA using [CLS] tokens. All
Ankh-Large prediction heads outperform SOTA for AUC, and many outperform SOTA for APS. Of
the Ankh-Large MHA results, the best came from those trained on the single task of predicting the
PDBBind labels, and MHAs using 4 attention heads tended to underperform. Multi-task training
with SSP achieved the best APS for MHA without [CLS] tokens. LR achieved APS and AUC of
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Table 1: APS and ROCAUC results across architectures for ESP using Anhk-Large embeddings.
Training samples with greater than 30% sequence identity with any member of validation or testing
sets has been removed.

PLM: Ankh-Large PDBBind only w/ SSP
Architecture APS AUC APS AUC

PocketMiner (PM) 0.81 0.87 N/A N/A
LR 0.805 0.889 0.805 0.889

MLP 16 0.805 0.890 0.801 0.890
MLP 64 0.808 0.890 0.807 0.890
MLP 256 0.806 0.890 0.807 0.890

MLP 1024 0.808 0.890 0.804 0.889
MHA 4 no CLS 0.845 0.911 0.755 0.891
MHA 8 no CLS 0.852 0.916 0.853 0.911

MHA 16 no CLS 0.820 0.897 0.841 0.908
MHA 4 0.802 0.906 0.832 0.907
MHA 8 0.821 0.908 0.849 0.897
MHA 16 0.854 0.926 0.840 0.902

0.805 and 0.889, respectively. This too outperforms SOTA on AUC. The high performance of LR
suggests that the embeddings produced by Ankh-Large have a meaningful degree of linear correla-
tion to the PDBBind-ligand-derived labels. Single layer MLPs of various widths struggled to make
meaningful improvement beyond this baseline, with the best performing MLP having only 64 nodes
(apparent using more significant figures).

4.2 Performance as a Function of Sequence Identity Limit

Figure 2 shows the best prediction head and task regime for the model with the highest APS and
AUC for each sequence identity threshold. Ankh-Large was used for all models in this subsection.
Figure 2a shows that 7 of 12 best models were MHA using [CLS] tokens, whereas the remainder
were MHA without use of [CLS] tokens. 4 of 12 best models were trained in the multi-task setting
using both PDBBind ligand-derived labels and SSP labels. The best performing models were fairly
consistent in terms of AUC until the 100% sequence identity threshold has used, when AUC rose to
above 0.95. APS was less consistent, but trended upward overall with increased sequence identity
threshold, achieving an APS of nearly 0.90 at the sequence identity threshold of 100%.

Figure 2b shows performance as a function of sequence identity limit for LR/MLP prediction heads.
The upward trending performance as sequence identity threshold is increase is smooth yet slight for
AUC, and again more varied but overall uptrending for APS.

The relatively flat performance curve until the 100% sequence identity level is consistent with expec-
tations of a well generalized model. One potential confounder arises when multiple structures with
different labels for the same residues enter the training set as the sequence identity limit increases.
Detection, analysis, and mitigation of this possibility is left for future work.

4.3 Inference on Test Set Examples

4.3.1 E. coli Outer Membrane Transporter FecA (1KMO)

Figure 3 shows inference results and labels for E. coli outer membrane transporter FecA (RCSB
PDB ID 1KMO). The ESP inference results for 1KMO, Figure 3a, show positive signal focused in
the area of the cryptic pocket positive labels shown in Figure 3c, which are the PM test set labels for
this protein. Outside the area of the cryptic pocket labels, ESP predicts that no cryptic pockets are
present. This prediction is easy to interpret, and phenomenologically correct in the sense that the
known pocket area stands out as such. The PM inference results for 1KMO, Figure 3b, also show
positive signal in the area of the cryptic pocket positive labels. However, the PM inference result
shows significant positive signal in many other places on the protein. While some of these positive
signals in the unknown region may reveal new cryptic pockets, there are so many that it is difficult
to motivate any particular starting point for drug design programs. There may also be many false
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(a) Best regime per seq. id. threshold. (b) Best MLP per seq. id. threshold.

(c) Best MHA without CLS per seq. id. threshold. (d) Best MHA per seq. id. threshold.

Figure 2: Figures 2 (a)-(d) show APS and AUC for the best prediction head atop Ankh-Large overall,
and for each prediction head class. (Text above each bar as above.)

positives. Distillation of this result into actionable insights is therefore not straighforward as with
ESP.

(a) 1KMO ESP inference. (b) 1KMO PM inference. (c) 1KMO PM labels.

Figure 3: Figure 3a shows ESP inference results, blue being negative prediction and red being
positive. Figure 3b shows PM inference results using the same color scale. Figure 3c shows the
binary PM test labels, where red indicates residues known to be associated with cryptic pocket
formation, and green indicates unknown status and is masked during APS and AUC calculation.
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4.3.2 Bovine Trypsin (1BTP)

Figure 4 shows inference results and labels for bovine trypsin (RCSB PDB ID 1BTP). The ESP
inference results for 1KMO, Figure 4a, show negative signal focued in the area of the non-pocket,
negative labels as shown in Figure 4c, which are the PM test set labels for this protein. ESP predicts
that no cryptic pockets are present in the area of the non-pocket, negative labels. This prediction
is also easy to interpret, and phenomenologically correct in the sense that the known non-pocket
areas stand out as such. The PM inference results for 1BTP, Figure 4b, show positive signal broadly
distributed across many residues with non-pocket negative labels. Whereas in the above example
there were many positive predictions in an unknown area, here many positive predictions are in
known non-pocket regions and are therefore clear false positives. Distillation of this PM inference
result into actionable insights is therefore not possible because of false positives.

(a) 1BTP ESP inference. (b) 1BTP PM inference. (c) 1BTP PM labels.

Figure 4: Figure 4a shows ESP inference results (colors as above). Figure 4b shows PM inference
results (colors as above). Figure 4c shows the binary PM test labels, where blue indicates residues
known to not be associated with cryptic pocket formation, and green as above.

4.4 Results Summary

Using PDBBind-derived samples with less that 30% sequence identity with validation or test set
samples, ESP with Ankh-Large achieves APS and AUC of 0.85 and 0.93, respecively. Using the
same sequence identity thresold, ESP with ESM-2 15B achieves the best APS of all PLMs tested of
0.86, but at considerably higher computational cost due to the large PLM itself and embedding size
of 5120, compared to Ankh’s embedding size of 1536. MHA prediction heads tend to outperform
others except for ProtT5-XL which favors MLP. Multi-task training using the ESM-2 SSP dataset
produced the best model in many cases, but not the majority.

SOTA, PocketMiner, achieves 0.81 and 0.87 APS and AUC on its test set. The PM test set was
also used for all ESP APS and AUC calculations. All PLMs except ProtBert enabled models that
outperformed SOTA on one or both of APS and AUC. All Ankh-Large enabled models achieved
the same. Figure 5 shows ROC and precision-recall (PR) curves for the best Ankh-Large models
trained with 30% and 100% sequence identity thresholds and PocketMiner, as evaluated using the
PocketMiner test set.

Inference via ESP tends to produce positive signal in a more focused and spatially-locallized manner,
whereas inference via PM tends to produce positive signal broadly and smoothly distributed over
many areas of a protein. While inference via ESP may miss some cryptic pockets, PM inference
may not be favored for pharmaceutical discovery due to the quantity and distribution of positive
predictions and non-trivial incidence of false positives.

5 Conclusion

We find that: (1) many PLMs enable ESP predictive efficacy beyond previous SOTA cryptic pocket
prediction algorithms, and Ankh-Large and ESM-2 15B enable top AUC and APS, respectively, (2)
that multi-task learning using the ESM-2 SSP dataset enhances predictive efficacy for many cases,
and (3) that ESP outperforms PM by a significant margin (ROCAUC 0.93 vs 0.87) on its own test
set.
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Figure 5: ROC and PR comparison between PocketMiner, ESP with Ankh-Large and 30% sequence
identity threshold, ESP with Ankh-Large and 100% sequence identity threshold.

Because mere logistic regression also achieved a meaningful AUC, this result shows that Ankh-
Large learned residue-level information from unsupervised training that linearly correlates with
cryptic pocket formation propensity.

A small molecule pharmaceutical development program invests significant capital in exactly one tar-
get. Therefore prediction clarity and ease of interpretation are essential. Initiating drug development
against a false positive cryptic pocket prediction would be very costly in terms of capital, time, and
leadership bandwidth. False negative predictions are less costly in direct terms. Application of ESP
at scale is therefore more valuable to small molecule drug developers than SOTA.

Future work can explore alternate labeling schema, including representations for multiple ligands
for similar structures and using a residue’s minimum distance to the nearest ligand atom to map
labels into a continuous range. A PLM ensemble approach that combines embeddings from multiple
PLMs and optionally downsamples may be worth exploring. It may also be useful to evaluate
the efficacy of other PLMs in powering this application and explore potential for transfer learning
between additional protein- and residue-level prediction tasks. Perhaps most significantly, future
work may attempt to combine PLM- and MD-based approaches to achieve results outperforming
either individual approach.
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A Appendix

Precision-Recall (PR), receiver operating characteristic (ROC), receiver operating characteristic area
under-the-curve (AUC), and average precision score (APS) were calculated using Scikit Learn (Pe-
dregosa et al., 2011).

Performance metrics for ESP using ESM2 with 15 billion parameters are summarized in Table 2.

Performance metrics for ESP using ESM2 with 3 billion parameters are summarized in Table 3.

Performance metrics for ESP using ProtT5-XL are summarized in Table 4

Performance metrics for ESP using ProtBert are summarized in Table 5.

For each pair of PLM and sequence identity limit prediction heads under test were: logistic regres-
sion, MLPs with widths of 16, 64, 256, and 1024, and MHAs with 4, 8, and 16 attention heads (for
both the with and without [CLS] embedding cases).

11

https://www.biorxiv.org/content/10.1101/2020.12.15.422761v1
https://www.biorxiv.org/content/10.1101/2020.12.15.422761v1
https://www.biorxiv.org/content/10.1101/622803v4
https://www.sciencedirect.com/science/article/pii/S0022283620306227
https://www.pnas.org/doi/abs/10.1073/pnas.2220778120
https://doi.org/10.1021/acs.jcim.8b00545
https://doi.org/10.1021/acs.jcim.8b00545


(a) Best MHA without CLS per PLM and metric. (b) Best MHA per PLM and metric.

Figure 6: Figure 6 (a) shows APS and AUC for the best MHA without CLS tokens for each PLM,
and (b) shows the same for MHA with CLS tokens. (Text above each bar as in Figure 1.)

(a) Best MHA without CLS per seq. id. threshold. (b) Best MHA per seq. id. threshold.

Figure 7: Figure 7 (a) shows APS and AUC for the best MHA without CLS tokens atop Ankh-Large,
and (b) shows the same for MHA with CLS tokens. (Text above each bar as in Figure 1.)

Table 2: Average prediction score and ROCAUC results across architectures for ESP using ESM-2
15B embeddings. Training samples with greater than 30% sequence identity with any member of
validation or testing sets has been removed.

PLM: ESM-2 15B PDBBind only w/ SSP
Architecture APS AUC APS AUC

LR 0.745 0.863 0.746 0.863
MLP 16 0.784 0.875 0.780 0.871
MLP 64 0.774 0.886 0.778 0.874
MLP 256 0.810 0.897 0.800 0.894

MLP 1024 0.830 0.914 0.835 0.908
MHA 4 no CLS 0.830 0.896 0.814 0.893
MHA 8 no CLS 0.865 0.911 0.817 0.885

MHA 16 no CLS 0.758 0.878 0.792 0.883
MHA 4 0.816 0.897 0.801 0.883
MHA 8 0.842 0.896 0.794 0.880
MHA 16 0.773 0.874 0.795 0.885
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Table 3: Average prediction score and ROCAUC results across architectures for ESP using ESM-
2 embeddings. Training samples with greater than 30% sequence identity with any member of
validation or testing sets has been removed.

PLM: ESM-2 3B PDBBind only w/ SSP
Architecture APS AUC APS AUC

LR 0.686 0.837 0.686 0.838
MLP 16 0.754 0.857 0.758 0.859
MLP 64 0.800 0.873 0.773 0.863
MLP 256 0.797 0.877 0.782 0.882

MLP 1024 0.820 0.892 0.783 0.866
MHA 4 no CLS 0.835 0.906 0.816 0.888
MHA 8 no CLS 0.806 0.886 0.785 0.877

MHA 16 no CLS 0.770 0.872 0.786 0.868
MHA 4 0.799 0.883 0.791 0.882
MHA 8 0.823 0.896 0.788 0.884
MHA 16 0.749 0.858 0.778 0.879

Table 4: Average prediction score and ROCAUC results across architectures for ESP using Prot-
Bert embeddings. Training samples with greater than 30% sequence identity with any member of
validation or testing sets has been removed.

PLM: ProtT5-XL PDBBind only w/ SSP
Architecture APS AUC APS AUC

LR 0.803 0.884 0.800 0.885
MLP 16 0.814 0.893 0.795 0.885
MLP 64 0.813 0.889 0.827 0.897
MLP 256 0.816 0.889 0.832 0.898

MLP 1024 0.815 0.893 0.837 0.898
MHA 4 no CLS 0.801 0.887 0.822 0.894
MHA 8 no CLS 0.813 0.890 0.808 0.897

MHA 16 no CLS 0.803 0.889 0.813 0.892
MHA 4 0.799 0.876 0.787 0.881
MHA 8 0.780 0.892 0.778 0.887
MHA 16 0.807 0.890 0.788 0.892

Table 5: Average prediction score and ROCAUC results across architectures for ESP using Prot-
Bert embeddings. Training samples with greater than 30% sequence identity with any member of
validation or testing sets has been removed.

PLM: ProtBert PDBBind only w/ SSP
Architecture APS AUC APS AUC

LR 0.576 0.725 0.576 0.733
MLP 16 0.606 0.768 0.602 0.767
MLP 64 0.653 0.809 0.676 0.815
MLP 256 0.643 0.796 0.639 0.797

MLP 1024 0.659 0.800 0.658 0.801
MHA 4 no CLS 0.639 0.791 0.613 0.764
MHA 8 no CLS 0.633 0.800 0.650 0.787

MHA 16 no CLS 0.689 0.820 0.669 0.800
MHA 4 0.659 0.817 0.652 0.794
MHA 8 0.661 0.813 0.654 0.790
MHA 16 0.710 0.827 0.663 0.807
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Table 6: Structures related to PM validation and test set structures at different thresholds of sequence
identity.

Sequence RCSB PDB PDBBind PDBBind
Identity % Structures Structures % removed

100 4507 1104 6.14%
95 6758 1894 10.5%
90 6940 1928 10.7%
70 8202 2009 11.2%
50 9064 2294 12.8%
30 22392 4937 27.4%

Table 7: Trainable parameters per prediction head for different architectures and PLMs, without
concurrent SSP training.

Prediction Head ProtBert/ProtT5-XL Ankh ESM-2 3B ESM-2 15B
LR 1,025 1,537 2,561 5,121

MLP 16 16,417 24,609 40,993 81,953
MLP 64 65,665 98,433 163,969 327,809
MLP 256 262,657 393,729 655,873 1,311,233

MLP 1024 1,050,625 1,574,913 2,623,489 5,244,929
MHA 4,197,376 9,441,792 26,222,080 104,872,960
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