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Abstract

The Boltzmann distribution of a protein provides a roadmap to all of its functional
states. Normalizing flows are a promising tool for modeling this distribution, but
current methods are intractable for typical pharmacological targets; they become
computationally intractable due to the size of the system, heterogeneity of intra-
molecular potential energy, and long-range interactions. To remedy these issues,
we present a novel flow architecture that utilizes split channels and gated attention
to efficiently learn the conformational distribution of proteins defined by internal
coordinates. We show that by utilizing a 2-Wasserstein loss, one can smooth the
transition from maximum likelihood training to energy-based training, enabling
the training of Boltzmann Generators for macromolecules. We evaluate our model
and training strategy on villin headpiece HP35(nle-nle), a 35-residue subdomain,
and protein G, a 56-residue protein. We demonstrate that standard architectures
and training strategies, such as maximum likelihood alone, fail while our novel
architecture and multi-stage training strategy are able to model the conformational
distributions of protein G and HP35.

1 Introduction

The structural ensemble of a protein determines its functions. The probabilities of the ground and
metastable states of a protein at equilibrium for a given temperature determine the interactions of the
protein with other proteins, effectors, and drugs, which are keys for pharmaceutical development.
However, enumeration of the equilibrium conformations and their probabilities is infeasible. Since
complete knowledge is inaccessible, we must adopt a sampling approach. Conventional approaches
toward sampling the equilibrium ensemble rely on Markov-chain Monte Carlo or molecular dynam-
ics (MD). These approaches explore the local energy landscape adjacent a starting point; however,
they are limited by their inability to penetrate high energy barriers. In addition, MD simulations are
expensive and scale poorly with system size.

In their pioneering work, Noé et al. [25] proposed a normalizing flow model [28], that is trained on
the energy function of a many-body system, termed Boltzmann generators (BGs). The model learns
an invertible transformation from a system’s configurations to a latent space representation, in which
the low-energy configurations of different states can be easily sampled. As the model is invertible,
every latent space sample can be back-transformed to a system configuration with high Boltzmann
probability, i.e., p(x) ∝ e−u(x)/(kT ).

BGs in the literature have often struggled with even moderate-sized proteins, due to the complexity
of conformation dynamics and scarcity of available data. Most works have focused on small sys-
tems like alanine dipeptide (22 atoms) [18, 23, 15]. To date, only two small proteins, BPTI and
bromodomain, have been modeled by BGs. Noé et al. [25] trained a BG for BPTI, a 58 amino acid
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structure, at all-atom resolution. Unfortunately, the training dataset used is licensed by DESRES
[31] and not open-source. No works since have shown success on proteins of similar size at all-atom
resolution or reported results for BPTI. Mahmoud et al. [21] trained a BG for bromodomain, a 100
residue protein, with a SIRAH coarse-grained representation. However, drug design applications
require much finer resolution than resolvable by SIRAH. See Appendix A.

The limited scope of flow model BG applications is due to the high computational expense of their
training process. Their invertibility requirement limits expressivity when modeling targets whose
supports have complicated topologies [3], necessitating the use of many transformation layers. An-
other hurdle in scaling BGs is that proteins often involve long-range interactions; atoms far apart
in sequence can interact with each other. In this work, we present a new BG method for general
proteins with the following contributions:

• We use a global internal coordinate representation with fixed bond-lengths and side-chain
angles. From a global structure and energetics point-of-view, little information is lost with
this representation. Such a representation not only reduces the number of variables but also
samples conformations more efficiently than Cartesian coordinates [25, 21].

• The global internal coordinate representation is initially split into a backbone channel and
a side-chain channel. This allows the model to efficiently capture the distribution of back-
bone internal coordinates, which most controls the overall global conformation.

• A new NN architecture for learning the transformation parameters of the coupling layers of
the flow model which makes use of gated attention units (GAUs) [13] and a combination of
rotary positional embeddings [34] with global, absolute positional embeddings for learning
long range interactions.

• To handle global conformational changes, a new loss-function, similar in spirit to the
Fréchet Inception Distance (FID) [9], is introduced to constrain the global backbone struc-
tures to the space of native conformational ensemble.

We show in this work that our new method can efficiently generate Boltzmann distributions and im-
portant experimental structures in two different protein systems. We demonstrate that the traditional
maximum likelihood training for training flow models is insufficient for proteins, but our multi-stage
training strategy can generate samples with high Boltzmann probability.

2 Background

2.1 Normalizing Flows

Normalizing flow models learn an invertible map f : Rd 7→ Rd to transform a random variable
z ∼ qZ to the random variable x = f(z) with distribution

qX(x) = qZ(z)|det(Jf (z))|−1, (1)

where Jf (z) = ∂f/∂z is the Jacobian of f . We can parameterize f to approximate a target distribu-
tion p(x). To simplify notation, we refer to the flow distribution as qθ, where θ are the parameters of
the flow. If samples from the target distribution are available, the flow can be trained via maximum
likelihood. If the unnormalized target density p(x) is known, the flow can be trained by minimizing
the KL divergence between qθ and p, i.e., KL(qθ||p) =

∫
X
qθ(x) log(qθ(x)/p(x))dx.

2.2 Distance Matrix

A protein distance matrix is a square matrix of Euclidean distances from each atom to all other
atoms. Practitioners typically use Cα atoms or backbone atoms only. Protein distance matrices have
many applications including structural alignment, protein classification, and finding homologous
proteins [11, 10, 41]. They have also been used as representations for protein structure prediction
algorithms, including the first iteration of AlphaFold [30, 40, 12].

2.3 2-Wasserstein Distance

The 2-Wasserstein Distance is a measure of the distance between two probability distributions. Let
P = N (µP ,ΣP ) and Q = N (µQ,ΣQ) be two normal distributions in Rd. Then, with respect to
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Figure 1: (a) Our split flow architecture. (b) Each transformation block consists of a gated attention
rational quadratic spline (RQS) coupling layer. (c) Example structures of protein G from the flow
qθ (left) and from molecular dynamics simulation p (right). We also show sample distance matrices
D(xqθ ) and D(xp).

the Euclidean norm on Rd, the squared 2-Wasserstein distance between P and Q is defined as

W2(P,Q)2 = ∥µP − µQ∥22 + trace(ΣP +ΣQ − 2(ΣPΣQ)
1/2). (2)

In computer vision, the Fréchet Inception Distance (FID) [9] computes the 2-Wasserstein distance
and is often used as an evaluation metric to measure generated image quality.

3 Scalable Boltzmann Generators

3.1 Problem Setup

BGs are generative models that are trained to sample from the Boltzmann distribution for physical
systems, i.e., p(x) ∝ e−u(x)/(kT ), where u(x) is the potential energy of the conformation x, k is the
Boltzmann constant, and T is the temperature. A protein conformation is defined as the arrangement
in space of its constituent atoms (Fig. 2), specifically, by the set of 3D Cartesian coordinates of its
atoms. Enumeration of metastable conformations for a protein at equilibrium is quite challenging
with standard sampling techniques. We tackle this problem with generative modeling. Throughout
this work, we refer to p as the ground truth conformation distribution and qθ as the distribution
parameterized by the normalizing flow model fθ.

3.2 Reduced internal coordinates

Energetically-favored conformational changes take place via rotations around single chemical bonds
while bond vibrations and angle bending at physiologic temperature result in relatively small spatial
perturbations [35]. Our focus on near ground and meta-stable states therefore motivates the use of
internal coordinates: N −1 bond lengths d, N −2 bond angles θ, and N −3 torsion angles ϕ, where
N is the number of atoms of the system (see Fig. 2). In addition, internal coordinate representation
is translation and rotation invariant. See Appendix C.
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Figure 2: A two residue chain.
Backbone atoms are highlighted
green. Shown is an example of a
bond length d, a bond angle θ, and
a dihedral/torsion angle ϕ.

A full internal coordinate system requires 3N−6 dimensions
where N is the number of atoms. Bond lengths hardly vary in
equilibrium distributions while torsion angles can vary im-
mensely. We treat non-backbone bond angles as constant,
again replaced by their mean. Heterocycles in the sidechains
of Trp, Phe, Tyr and His residues are treated as rigid bodies.
Our final representation is

x = [θbb,ϕbb,ϕsc],

where the subscripts bb and sc indicate backbone and
sidechain, respectively. This reduces the input dimension and
keeps the most important features for learning global confor-
mation changes in the equilibrium distribution.

3.3 Training and evaluation

We train BGs with MD simulation data at equilibrium, i.e.,
the distribution of conformations is constant and not changing as with, for example, folding. We
seed the simulation with energetically stable native conformations. BG training aims to learn to
sample from the Boltzmann distribution of protein conformations. We compute the energy of sam-
ples generated by our model under the AMBER14 forcefield [2] and report their mean. In addition,
in order to evaluate how well the flow model generates the proper backbone distribution, we define
a new measure:
Definition 3.1 (Distance Distortion). Let Abb denote the indices of backbone atoms. Define D(x)
as the pairwise distance matrix for the backbone atoms of x. Define P = {(i, j)|i, j ∈ Abb}. The
distance distortion is defined as

∆D := E
xqθ

∼qθ
xp∼p

 1

|P|
∑

(i,j)∈P

|D(xqθ )ij −D(xp)ij |

 , (3)

While D(x) is square, in practice, we only use the upper triangle with an offset of one as the matrix
is symmetric and contains zeros on the diagonal.

3.4 Split Flow Architecture

We use Neural Spline Flows (NSF) with rational quadratic splines [7] having 8 bins each. The
conditioning is done via coupling. Torsion angles ϕ can freely rotate and are therefore treated as
periodic coordinates [29].

The full architectural details are highlighted in Fig. 1. We first split the input into backbone and
sidechain channels:

xbb = [θbb,ϕbb], xsc = [ϕsc].

We then pass the backbone inputs through Lbb = 48 gated attention rational quadratic spline (GA-
RQS) coupling blocks. As all the features are angles in [−π, π], we augment the features with their
mapping on the unit circle. In order to utilize an efficient attention mechanism, we employ gated
attention units (GAUs) [13]. In addition, we implement relative positional embeddings [32] on a
global level so as to allow each coupling block to utilize the correct embeddings. The backbone
latent embeddings are then concatenated with the side chain features and passed through L = 10
more GA-RQS coupling blocks.

3.5 Multi-stage training strategy

Normalizing flows are most often trained by maximum likelihood, i.e., minimizing the negative log
likelihood (NLL)

LNLL(θ) := −Ex∼p[log qθ(x)], (4)
or by minimizing the reverse KL divergence (rKLD):

LKL(θ) := Ex∼qθ [log(qθ(x)/p(x))]. (5)
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In the BG literature, minimizing the rKLD is often referred to as “training-by-energy”, as the expres-
sion can be rewritten in terms of the energy of the system. The rKLD suffers from mode-seeking
behavior, which is problematic when learning multimodal target distributions. While minimizing
the NLL is mass-covering, samples generated from flows trained in this manner suffer from high
variance. In addition, for larger systems, maximum likelihood training often results in high-energy
generated samples.

Noé et al. [25] used a convex combination of the two loss terms, in the context of BGs, in order
to both avoid mode-collapse and generate low-energy samples. However, for larger molecules,
target evaluation is computationally expensive and dramatically slows iterative training with the
rKLD. In addition, during the early stages of training, the KL divergence explodes and leads to
unstable training. One way to circumvent these issues is to train with the NLL loss, followed by a
combination of both loss terms. Unfortunately, for larger systems, the KL term tends to dominate
and training often get stuck at non-optimal local minima. In order to remedy these issues, we
consider a sequential training scheme, whereby we smooth the transition from maximum likelihood
training to the combination of maximum likelihood and rKLD minimization.

(1) As mentioned previously, we first train with maximum likelihood to convergence.

(2) Afterward, we train with a combination of the NLL and the 2-Wasserstein loss with respect to
distance matrices of the backbone atoms:

LW(θ) := ∥µqθ − µp∥22 + trace(Σqθ +Σp − 2(ΣqθΣp)
1/2), (6)

where

µp := Ex∼p[xbb], Σp := Ex∼p[(xbb − µp)(xbb − µp)
⊤] (7)

µqθ := Ex∼qθ [xbb], Σqθ := Ex∼qθ [(xbb − µqθ )(xbb − µqθ )
⊤] (8)

are mean and covariance, respectively, of the vectorized backbone atom distance matrices.

(3) As a third stage of training, we train with a combination of the NLL, the 2-Wasserstein loss, and
the KL divergence. In our final stage of training, we drop the 2-Wasserstein loss term and train to
minimize a combination of the NLL and the KL divergence.

4 Results

4.1 Protein Systems

Alanine dipeptide (ADP) is a two residue (22-atoms) common benchmark system for evaluating
BGs [25, 18, 23]. We use the MD simulation datasets provided by [23] for training and validation.

HP35(nle-nle), a 35-residue double-mutant of the villin headpiece subdomain, is a well-studied
structure whose folding dynamics have been observed and documented [1]. For training, we use the
MD simulation dataset made publicly available by [1] and remove faulty trajectories and unfolded
structures as done by [14].

Protein G is a 56-residue cell surface-associated protein from Streptococcus that binds to IgG with
high affinity [4]. In order to train our model, we generated samples by running a MD simulation. The
crystal structure of protein G, 1PGA, was used as the seed structure. The conformational space of
Protein G was first explored by simulations with ClustENMD [17]. From 3 rounds of ClustENMD
iteration and approximately 300 generated conformations, 5 distinctly diverse structures were se-
lected as the starting point for equilibrium MD simulation by Amber. On each starting structure, 5
replica simulations were carried out in parallel with different random seeds for 400 ns at 300 K. The
total simulation time of all the replicas was accumulated to 1 microsecond. Thus, 106 structures of
protein G were saved over all the MD trajectories.

As a baseline model for comparison, we use Neural Spline Flows (NSF) with 58 rational quadratic
spline coupling layers [7]. NSFs have been used in many recent works on BGs [19, 23, 21]. In
particular, [23] utilized the NSF model (with fewer coupling layers) in their experiments with alanine
dipeptide, a two residue system. In our experiments with ADP and HP35, we utilize 48 GA-RQS
coupling layers for the backbone followed by 10 GA-RQS coupling layers for the full latent size.
We also ensure that all models have a similar number of trainable parameters. We use a Gaussian
base distribution for non-dihedral coordinates. For ADP and HP35, we use a uniform distribution for
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Table 1: Training BGs with different strategies. We compute ∆D, energy u(·), and mean NLL
of 106 generated structures after training with different training strategies with protein G and Villin
HP35. ∆D is computed for batches of 103 samples. Means and standard deviations are reported.
Statistics for u(·) are reported for structures with energy below the median sample energy. Results
for ∆D and u(·) that are within tolerable range are bold-faced, while the best result for mean NLL
is bold-faced. For reference, the energy for training data structures is −317.5 ± 125.5 kcal/mol for
protein G and −1215.5± 222.2 kcal/mol for villin HP35. We compare our results against a Neural
Spline Flows (NSF) baseline model.

Training strategy

System Arch. NLL KL W2. ∆D (Å) Energy u(x) (kcal/mol) −Ep(x)[log qθ(x)]

NSF ✓ 0.09± 0.01 (−1.19± 0.61)× 101 38.29± 0.19

✓ 0.08± 0.01 (−1.18± 0.65)× 101 36.15± 0.15
ADP Ours ✓ ✓ 0.05± 0.01 (−1.20± 0.59)× 101 38.66± 0.19

✓ ✓ 0.04± 0.00 (−1.06± 0.74)× 101 38.12± 0.03

Ours ✓ ✓ ✓ 0.03± 0.01 (−1.31± 0.52)× 101 37.67± 0.09

NSF ✓ 2.92± 0.80 (2.15± 3.31)× 1010 −263.46± 0.13

✓ 1.81± 0.14 (9.47± 15.4)× 108 −310.11± 0.08
Protein G Ours ✓ ✓ 16.09± 1.14 (2.86± 0.62)× 102 −308.68± 0.08

✓ ✓ 0.18± 0.01 (2.68± 4.31)× 106 −307.17± 0.01

Ours ✓ ✓ ✓ 0.19± 0.01 (−3.04± 1.24)× 102 −309.10± 0.91

NSF ✓ 0.81± 0.06 (7.78± 17.4)× 107 687.95± 1.92

✓ 0.65± 0.04 (5.29± 11.7)× 106 651.90± 2.88
HP35 Ours ✓ ✓ 0.61± 0.04 (6.46± 14.3)× 102 678.38± 0.87

✓ ✓ 0.38± 0.03 (1.15± 1.76)× 107 678.31± 1.55

Ours ✓ ✓ ✓ 0.39± 0.03 (−4.66± 3.52)× 102 667.45± 2.04

dihedral coordinates. For protein G, we use a von Mises base distribution for dihedral coordinates;
we noticed that using a von Mises base distribution improved training for the protein G system as
compared to a uniform or truncated normal distribution.

4.2 Main Results

From Table 1, we see that our model has marginal improvements over the baseline model for ADP.
This is not surprising as the system is extremely small, and maximum likelihood training sufficiently
models the conformational landscape.

For both proteins, our model closely captures the individual residue flexibility as analyzed by the
root mean square fluctuations (RMSF) of the generated samples from the various training schemes
in Fig. 3(a). This is a common metric for MD analysis, where larger per-residue values indicate
larger movements of that residue relative to the rest of the protein. Fig. 3(a) indicates that our model
generates samples that present with similar levels of per-residue flexibility as the training data.

Table 1 displays ∆D, the mean energy, and the mean NLL of structures generated from flow models
trained with different strategies. For each model (architecture and training strategy), we generate
3 × 106 conformations (106 structures over 3 random seeds) after training with either protein G
or Villin HP35. Due to the cost of computing ∆D, we compute it for batches of 103 samples and
report statistics (mean and standard deviation) over the 3×103 batches. Before we computed sample
statistics for the energy u, we first filtered out the samples with energy higher than the median value.
This was done to remove high energy outliers that are not of interest and would noise the reported
mean and standard deviations. We also report the mean and standard deviation (across 3 seeds) for
the average NLL. We see that our model is capable of generating low-energy, stable conformations
for these two systems while the baseline method and ablated training strategies produce samples
with energies that are positive and five or more orders of magnitude greater.
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Figure 3: Sample conformations generated by BG via different training strategies. (a) Root
mean square fluctuation (RMSF) computed for each residue (Cα atoms) in HP35 and protein G.
Matching the training dataset’s plot is desirable. (b) Examples of HP35 from ground truth train-
ing data, generated samples from our model, and generated samples from the baseline model. (c)
Example of two metastable states from protein G training data. (d) Low-energy conformations of
protein G generated by our model superimposed on each other. We also show some examples of
pathological structures generated after training with different training paradigms: NLL (maximum
likelihood), both NLL and KL divergence, and NLL and the 2-Wasserstein loss. Atom clashes are
highlighted with red circles.

Table 1 highlights a key difference in the results for protein G and villin HP35. For villin, mod-
els trained by reverse KL and without the 2-Wasserstein loss do not result in completely unraveled
structures. This is consistent with the notion that long-range interactions become much more impor-
tant in larger structures. From Fig. 3(b), we see that Villin HP35 is not densely packed, and local
interactions, e.g., as seen in α-helices, are more prevalent than long-range interactions/contacts. In
addition, we see that our model generates diverse alternative modes of the folded villin HP35 protein
that are energetically stable compared to the structures obtained from the baseline model.

Fig. 3(d) visualizes pathological structures of protein G generated via different training schemes. In
Fig. 3(d, left), we see that minimizing the NLL generally captures local structural motifs, such as the
α-helix. However, structures generated by training only with the NLL loss tend to have clashes in
the backbone, as highlighted with red circles in Fig 3(d), and/or long range distortions. This results
in large van der waals repulsion as evidenced by the high average energy values in Table 1.

In Fig. 3(d, middle), we see that structures generated by minimizing a combination of the NLL loss
and the reverse KL divergence unravel and present with large global distortions. This results from
large, perpetually unstable gradients during training. In Fig. 3(d, right), we see that training with a
combination of the NLL loss and the 2-Wasserstein loss properly captures the backbone structural
distribution, but tends to have clashes in the sidechains. Table 1 demonstrates that only our model
with our multistage training strategy is able to achieve both low energy samples and proper global
structures. The 2-Wasserstein loss prevents large backbone distortions, and thus, simultaneously
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Figure 4: BGs can generate novel sample conformations. (a) Protein G 2D UMAP embeddings for
the training data, test data, and 2×105 generated samples. (b) A representative example of generated
structures by the BG model which was not found in training data (magenta) and the closest structure
in the training dataset (cyan) by RMSD. Both structures are depicted as stars with their respective
structural colors in (a). (c) Protein G energy distribution of training dataset (orange) and samples
(blue) generated by our model. The second energy peak of the sampled conformations covers the
novel structure shown in (b). (d) An overlay of high-resolution, lowest-energy all-atom structures
of protein G generated by the BG model. This demonstrates that our model is capable of sampling
low-energy conformations at atomic resolution.

minimizing the reverse KL divergence accelerates learning for the side chain marginals with respect
to the backbone and other side chain atoms.

4.3 BGs can generate novel samples

One of the primary goals for development of BG models is to sample important metastable states
that are unseen or difficult to sample by conventional MD simulations. Protein G is a medium-size
protein with diverse metastable states that provide a system for us to evaluate the capability of our
BG model. First, we visualize 2D UMAP embeddings [22] for the training data set, test dataset, and
for 2 × 105 generated samples of protein G in Fig. 4(a). We see that the test dataset 4(a, middle),
an independent MD dataset, covers far less conformational space than an equivalent number of BG
samples as shown in Fig. 4(a, right).

Secondly, we computed, respectively, the energy distributions of the training set from MD simula-
tions and sample set from the BG model as shown by Fig. 4(c). Unlike the training set, the BG
sample energy distribution is bimodal. Analysis of structures in the second peak revealed a set of
conformations not present in the training set. These new structures are characterized by a large
bent conformation in the hair-pin loop which links beta-strand 3 and 4 of protein G. Fig. 4(b) com-
pares representative structures of the discovered new structure (magenta) with the closest structure
(by RMSD) in the training dataset (cyan). We also see vastly different sidechain conformations
along the bent loops between two structures. Energy minimization on the discovered new structures
demonstrated that these new structures are local-minimum metastable conformations. Thirdly, we
carefully examined the lowest-energy conformations generated by the BG model. Fig. 4(d) show-
cases a group of lowest-energy structures generated by the BG model, overlaid by backbone and
all-atom side chains shown explicitly. All of these structures are very similar to the crystal structure
of protein G, demonstrating that the trained BG model is capable of generating protein structures
with high quality at the atomic level.
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A Related works

I. Boltzmann Generators

Bolzmann generators [25] are normalizing flows that approximate Boltzmann distributions. [25]
utilized the fact that normalizing flows are tractable density models and introduced a notion of train-
ing by energy via reverse KL-divergence minimization. Recently, there has been a growing interest
in Boltzmann generators. [5] proposed temperature steerable flows that generalized to families of
ensembles across multiple temperatures, thereby increasing the range of thermodynamic states ac-
cessible for sampling. Unfortunately, this model tends to undersample significant local minimas
for systems as small as alanine dipeptide. The authors believed that this was due to the limited ex-
pressivity of the flow model. [38] proposed stochastic normalizing flows, which combine flows with
MCMC methods by introducing sampling layers between flow layers to improve model expressivity.
Unfortunately, this method is computationally expensive as it involves many more target evaluations.
In addition, stochastic normalizing flows tend to miss modes [23]. [18] introduced smooth normaliz-
ing flows, which are C∞-smooth, thus making them more physically amenable. They also introduce
force-matching as an added loss term. While they have impressive results and modal coverage for
alanine dipeptide, they utilize a root-finding algorithm to approximate the inverse for their smooth
flows, which becomes computationally prohibitive for higher-dimensional systems.

This work has focused on normalizing flows. However, diffusion models have also shown great
promise as an alternative generative model for learning Boltzmann generators. [16] train a diffusion
model to learn the Boltzmann distribution over the torsion angles of multiple drug-like molecules,
while using cheminformatics methods for the bond lengths and angles. They perform energy-based
training (similar in spirit to the reverse KL divergence in flow model training) via estimation of a
score matching loss using samples generated by the model. However, this method does not scale
well to larger molecules and inherits the same problem of unstable training at initialization.

II. Loss functions

[37] trained a flow model without MD samples by minimizing the KL divergence to approximate the
Boltzmann distribution of atomic solids with up to 512 atoms. However, the KL-divergence suffers
from mode-seeking behavior, which severely impairs training for multimodal target distributions.
While the forward KL-divergence, i.e. maximum likelihood, is mass covering, the Monte Carlo
approximations of such an objective have a very high variance in loss. To circumvent this, [23] trains
a flow to approximate a target p by minimizing the alpha-divergence with α = 2, which is estimated
with annealed importance sampling (AIS) using the flow q as the base distribution and p2/q as target.
This method is notable in that it does not require any MD samples but still achieves impressive
results for alanine dipeptide. Nonetheless, the AIS component is computationally expensive and
scales poorly for larger systems.

III. Coarse-graining

Several works have attempted to scale flow-based Boltzmann generators to larger systems. [21]
trained a flow model on coarse-grained protein representations which they then mapped back to
full-atom representations using a language model. On a similar note, [19] trained a normalizing
flow to represent the probability density for coarse-grained (CG) MD samples in order to learn the
parameters of a CG model. Unfortunately, coarse-grain approaches tend to lose significant informa-
tion compared to full-atom resolution for downstream applications. Importantly, both works note
that using internal-coordinate representations do not scale well as small changes in torsion angles
can lead to large global distortions. Our results indicate that this is not necessarily true, as we use a
reduced internal-coordinate representation.

IV. Normalizing flow architectures

Our flow model, while novel, shares some similarities to previous works. DenseFlow [8] fuses a
densely connected convolutional block with Nyström self-attention in modules with both cross-unit
and intra-module couplings. This architecture is specifically designed for image data and utilizes a
linear approximation for the self-attention mechanism. In contrast, we use gated attention and rotary
positional embeddings in order to handle the sequential nature of proteins.
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Multiscale flow architectures were first introduced by [6] In the protein domain, previous works also
split the inputs into different channels [25, 18, 19]. However, they split the input dimensions into
torsion, angle, and bond channels. In contrast, our model splits the input into separate backbone and
sidechain channels to better capture the global distribution.

B Training by energy

Below, we show the connection between minimizing the reverse KL-divergence and minimizing the
energy of generated samples.

KL(qθ||p) = Ex∼qθ [log qθ(x)− log p(x)]

= Ez∼q [log q(z)− log |det(Jfθ (z))| − log p(fθ(z))]

= −Hz + logC + Ez∼q [u(fθ(z))− log |det(Jfθ (z))|] ,

where Hz is the entropy of the random variable z and C =
∫
e−u(x)/(kT )dx is the normalization

constant for the Boltzmann distribution p(x) ∝ e−u(x)/(kT ). When minimizing the KL-divergence
with respect to the parameters θ, the entropy term and the log normalization constant disappear as
they are not dependent on θ:

θ∗ = argmin
θ

���−Hz +���logC + Ez∼q [u(fθ(z))− log |det(Jfθ (z))|]

= argmin
θ

Ez∼q [u(fθ(z))− log |det(Jfθ (z))|] .

The expectation here is usually approximated with a Monte Carlo estimate, but a variety of differ-
ent sampling procedures can be utilized. The log determinant Jacobian (ldj) term can be seen as
promoting entropy, or exploration, of the sample space.

C Coordinate Transformation

I. Protein Structure

Protein structure refers to the three-dimensional arrangement of atoms in an amino acid-chain
molecule. There are four distinct levels by which we can describe protein structure. The primary
structure of a protein refers to the sequence of amino acids in the polypeptide chain. The secondary
structure refers to regularly patterned local sub-structures on the actual polypeptide backbone chain.
The two most common secondary structure motifs are α-helices and β-sheets. Tertiary structure
refers to the overall three-dimensional structure created by a single polypeptide. Tertiary structure
is primarily driven by non-specific hydrophobic interactions as well as long-range intramolecular
forces. Quaternary structure refers to the three-dimensional structure consisting of two or more
polypeptide chains that operate as a single functional unit.

II. Coordinate Representations

Boltzmann generators usually do not operate directly with Cartesian coordinates. The primary global
conformational changes of a protein do not described efficiently by the atomic Cartesian coordinates.
This is driven by the fact that chemical bonds are very stiff, and energetically-favored conformational
changes take place via rotations around single chemical bonds [35]. A more commonly used alter-
native is internal coordinates. Internal coordinates are defined by bond lengths d, bond angles θ, and
dihedral angles ϕ (Fig. S1).

In their seminal work, [25] introduced a coordinate transformation whereby the protein backbone
atoms (primarily defined as the N , Cα, and C atoms) are mapped PCA coordinates while the rest
of the atoms are mapped to internal coordinates. The motivation behind this mixed coordinate
transformation is that protein conformations are highly sensitive to changes in backbone internal
coordinates. This often results in unstable training and difficulty in generating natural, i.e., high
Boltzmann probability, structures. Most works since have used full internal coordinate representa-
tions but experimented only with small systems, the most common of which is alanine dipeptide
(22 atoms). [19] note that scaling Boltzmann generators to larger systems is difficult with internal
coordinate representations.
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Fig. S1: An illustration of the definition of bond length, bond angle, and dihedral angle by four
atoms. Subscripts indicate the atoms that define the value, where order is given by the bond graph
connectivity. In internal coordinate system, the position or Cartesian coordinate of atom 4 is deter-
mined by atom 1,2 and 3 based on bond length, bond angle and dihedral angle.

In our work, rather than using a full internal coordinate representation, which would be 3N − 6
dimensional (where N is the number of atoms in the system), we utilize a reduced internal coordinate
representation. For training features, we use the dihedral angles and the bond angles for the 3
backbone atoms (N , Cα, C). For side-chain atoms, we use all rotatable dihedral angles around single
bond. All bond lengths and bond angles other than the 3 defining backbone atoms and improper
torsion angles are kept at their mean values calculated from input protein structures. By examining
all protein structures generated, we confirmed that such a reduced internal coordinate system can
represent all protein structures to very high accuracy and quality. Recent works have adopted similar
approaches; [39] utilize only the backbone torsion and bond angles to represent various proteins,
while Wang et al. [36] simply use the backbone torsion angles to represent the polypeptide AiB9.

D Training details and architecture

All models were trained on a single NVIDIA A100 GPUs with the Adam optimizer and a dropout
factor of 0.1. For model that utilized GAU-RQS blocks, the dimensionalities of the Q, K, and V
matrices were 32, 32, and 64, respectively. In addition, we utilized scaled normalization [24], the
Laplace attention function [20], and SiLU activations [27]. For the gated attention units, we also use
the T5 relative positional bias [26]. For the rational quadratic splines, we use a bin size of K = 8.

Data was all standard normalized. Dihedral angles were constrained to be within [−π, π] and shifted
as done by [33].

For the multi-stage training strategy, all models were trained for 200 epochs ( 12 hours) with the
NLL loss, 50 epochs ( 8 hours) with NLL+W, 20 epochs ( 8 hours) with NLL+W+KL, and 10
epochs ( 3 hours) with NLL+KL. The approximate times are for protein G, which has 56 residues.

We do no hyperparameter tuning due to the lack of compute and time. Further implementation
details are given in the code, which is available upon request.

14


	Introduction
	Background
	Normalizing Flows
	Distance Matrix
	2-Wasserstein Distance

	Scalable Boltzmann Generators
	Problem Setup
	Reduced internal coordinates
	Training and evaluation
	Split Flow Architecture
	Multi-stage training strategy

	Results
	Protein Systems
	Main Results
	BGs can generate novel samples

	Related works
	Boltzmann Generators
	Loss functions
	Coarse-graining
	Normalizing flow architectures

	Training by energy
	Coordinate Transformation
	Protein Structure
	Coordinate Representations

	Training details and architecture

