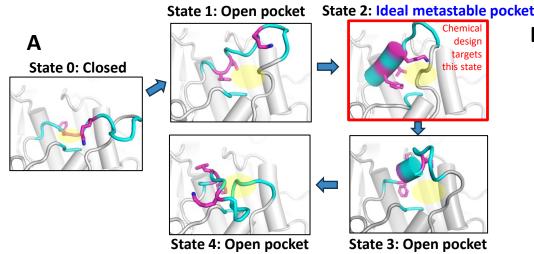
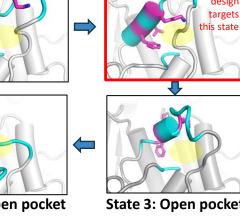
P4-12-18


ETX-636, a Potential Best-In-Class, Oral, Small Molecule, Allosteric Pan-Mutant-Selective **PI3Kα Inhibitor and Degrader**


Robert Koncar, Mingzong Li, Jingyan Gao, Fei Pang, Ying Lin, Raj Nagaraja, Yong Tang, Hannah Szeto, Zi Peng Fan, Karan Kapoor, Robbie Chen, Eric Simone, Minghong Hao, Shengfang Jin, Tao Liu, Tai Wong, Meghana Kulkarni, and Jeffery Kutok Ensem Therapeutics, Waltham, MA

Introduction

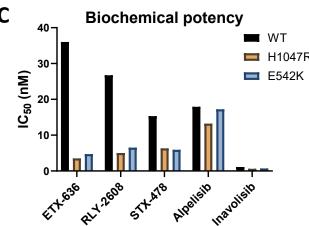
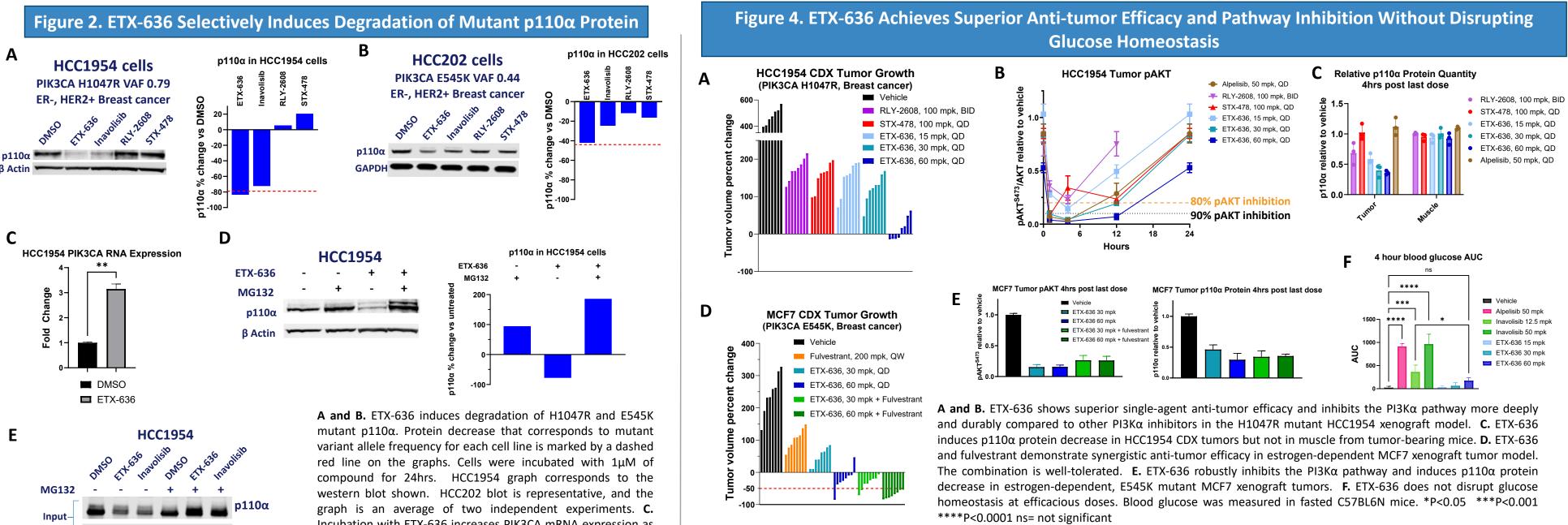

- Phosphatidylinositol 3 kinase alpha (PI3Kα) is a frequently mutated oncogene whose activity is important for tumor growth. Up to 40% of hormone receptor (HR)-positive breast tumors are PI3K α mutant.
- Orthosteric inhibitors, alpelisib and inavolisib, which inhibit both WT and mutant PI3Kα, are approved in combination regimens for treating *PIK3CA*-mutant, HR-positive, HER2-negative, advanced or metastatic breast cancer. However, because PI3Kα is a critical component of the insulin signaling pathway, these non-selective inhibitors which target both the WT and mutant PI3K α often cause severe hyperglycemia, limiting their clinical utility ^{1,2,3}.
- ETX-636 is an allosteric, pan-mutant-selective PI3Kα inhibitor and degrader, designed leveraging our Kinetic Ensemble[®] platform for optimal binding properties. Compared to other allosteric, pan-mutant-selective PI3Ka inhibitors (i.e. RLY-2608 and STX-478), ETX-636 has stronger target binding affinity, better on-target potency in biochemical and cellular pharmacodynamic and viability assays, and demonstrates superior anti-tumor activity in *vivo*. Mechanistically, ETX-636 selectively induces proteasome-dependent degradation of mutant p110α protein.
- At efficacious doses, ETX-636 has significantly less effect on blood glucose in mice compared to orthosteric inhibitors, demonstrating that ETX-636 can achieve potent anti-tumor activity by selectively targeting mutant PI3Ka protein without disrupting glucose homeostasis.

Figure 1. ETX-636 Has Superior Binding Affinity, Potency, and Selectivity Compared to Other Allosteric **Pan-Mutant-Selective PI3Kα Inhibitors**

		Biophysical (Surface Plasmon Resonance)							
		ETX-636		RLY-	2608	STX-478			
		PI3Kα WT	ΡΙ3Κα H1047R	ΡΙ3Κα WT	ΡΙ3Κα H1047R	PI3Kα WT	ΡΙ3Κα H1047R		
KD	(nM)	13.8	<1	35.9	2.8	49.8	6.7		
k on	(M ⁻¹ S ⁻¹) x 10 ³	1.3	11	1.1	12	13.7	76		
k off	(S ⁻¹) x 10 ⁻⁵	1.8	<1 *	3.9	3.4	68.2	51		
	*Reached machine detection limit								

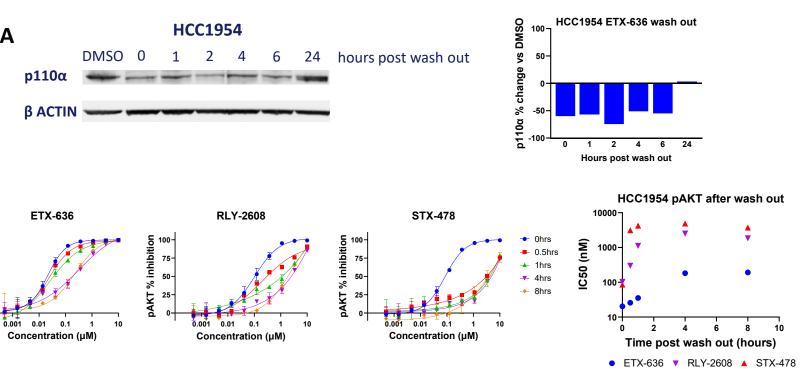


D

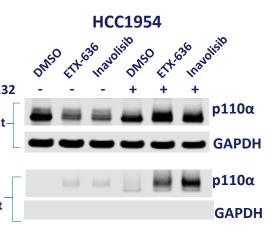
		Biochemical Selectivity ratio			
Mode of inhibition	Compound	WT/H1047R	WT/E542K		
	ETX-636	10.4	7.8		
Pan Mutant Allosteric	RLY-2608	5.4	4.1		
Allosteric	STX-478	2.5	2.6		
ATP Competitive	Alpelisib	1.4	1.0		
Orthosteric	Inavolisib	1.9	1.6		

A and	B. ETX-636	was designe	d to
target	the most sta	ble inhibitor	уA
loop c	onformation,	resulting in	ver
strong	binding	affinity	а
detern	nined by SPR.		

C and D. ETX-636 is more potent and mutant-selective than other allosteric pan-mutant inhibitors in biochemical and cell assays. Biochemical assays (C) were run with full length proteins and 2 hours pre-incubation with compound. Cellular levels of pAKT (D) were measured by HTRF and included 2 hours of incubation with compound (incubation >2hr results in higher potency for ETX-636 but not other compounds). CellTiter-Glo (CTG) assay for evaluating effect on Cell proliferation (D) was run after cells were incubated for 7 days with compound. Absolute IC₅₀ values are shown for CTG viability assays.

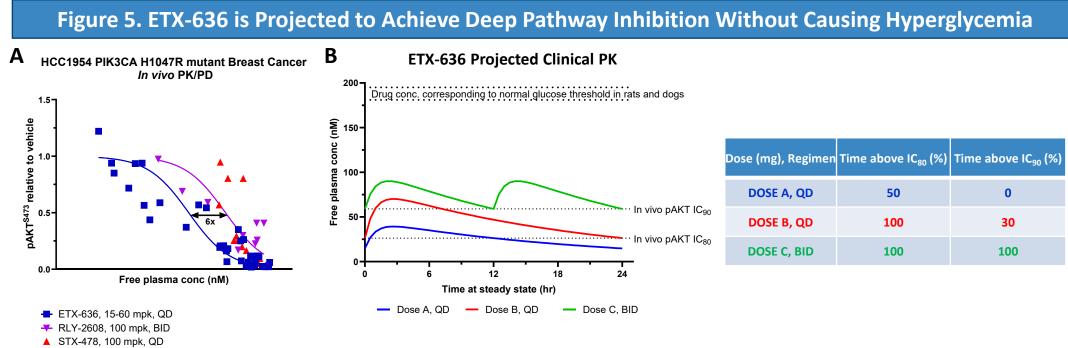


Ub IP Product



В

A. Following washout of ETX-636, p110α protein requires greater than 6 hours to return to baseline levels. Cells were incubated with 1µM ETX-636 for 24 hours and then cultured in fresh media without compound for the indicated durations of time. **B.** PI3Ka pathway inhibition is better sustained after wash out of ETX-636 compared to other allosteric pan-mutant selective PI3Kα inhibitors.


	pAKT and Cell Proliferation IC ₅₀ (nM)									
	ETX-636		RLY-2608		STX-478		Alpelisib		Inavolisib	
Cell lines (PIK3CA Status)	pAKT IC ₅₀ (nM)	CTG IC ₅₀ (nM)	pAKT IC ₅₀ (nM)	CTG IC₅₀ (nM)	pAKT IC ₅₀ (nM)	CTG IC₅₀ (nM)	pAKT IC ₅₀ (nM)	CTG IC₅₀ (nM)	pAKT IC _{so} (nM)	CTG IC ₅₀ (nM)
HCC1954 (H1047R)	31	78	87	860	59	1920	135	928	15	74
GP2D (H1047L)	8	57	23	415	23	353	33	790	6	89
MDA-MB-361 (E545K, K567R)	31	206	97	1160	87	838	46	724	11	149
AGS (E453K, E545A)	17	76	90	954	75	811	43	507	6	40
NCIN87 (WT)	260	514	633	1385	535	2607	181	550	23	123

This presentation is the intellectual property of the author/presenter. Please contact Robert Koncar << Robert.Koncar@Ensemtx.com >> for permission to reprint and/or distribute.

Incubation with ETX-636 increases PIK3CA mRNA expression as measured by qPCR (n=2) **P<0.01, consistent with other PI3K α inhibitors⁴. **D.** ETX-636-induced p110 α protein decrease is prevented by the proteasome inhibitor MG132. E. Immunoprecipitation for ubiquitin followed by western blot for p110a shows treatment with ETX-636 induces p110a ubiquitination. Compounds were incubated at 1µM for 18-24 hours for in vitro experiments.

A. In vivo PK-PD relationship indicates ETX-636 has superior intrinsic potency. B. ETX-636 is projected to achieve clinical exposures sufficient for deep, sustained pathway inhibition without causing hyperglycemia. pAKT IC₈₀ and IC₉₀ values were calculated from panel A. Drug concentration thresholds corresponding to normal glucose were determined in rat and dog toxicology studies.

- biochemical, and cellular profiles
- action among allosteric pan-mutant-selective PI3Kα inhibitors
- hyperglycemia and is entering first-in-human clinical trials in the first half of 2025

Conclusions

ETX-636 is a potential best-in-class allosteric, pan-mutant-selective PI3Kα inhibitor with superior biophysical,

ETX-636 induces degradation of mutant p110 α in vitro and in vivo, but spares wildtype p110 α - a unique mechanism of

ETX-636 demonstrates regressions in both kinase and helical domain PI3Kα mutant tumors, synergizes with fulvestrant, and shows concordant deep and durable PI3K α pathway inhibition in preclinical xenograft models

ETX-636 has the potential to achieve drug exposures to continuously cover the pAKT IC₉₀ in the clinic without

	References
1.	André, F. et al. <i>Ann. Oncol.</i> 32 , 208–217 (2021).
2.	Bedard, P. L. et al. <i>J. Clin. Oncol.</i> 40 , 1052–1052 (2022).
3.	Rugo, H. S. et al. Ann. Oncol. 31 , 1001–1010 (2020).
4.	Song, K.W. et al. Cancer Discov. 12(1), 204-219 (2022)