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Background: The structural ensemble of a protein determines
functions. The probabilities of the ground and metastable states of a
protein at equilibrium for a given temperature determine the interactions of
the protein with other proteins, effectors, and drugs, which are keys for
pharmaceutical development.

Previous work: Traditional methods for sampling the equilibrium
distribution rely on Markov-chain Monte Carlo or molecular dynamics
(MD). These methods often get stuck in local minima and are sensitive to
Initial seeding. Previous ML-based methods employ normalizing flow
models [1,2,3]. However, these methods scale poorly and empirical results
are often demonstrated for small systems like alanine dipeptide. Some
works have utilized coarse graining [4,5] along with normalizing flows, but
these methods do not provide the resolution often required for

downstream applications such as drug-design.
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Figure 1: (a) Our split flow architecture. (b) Each transformation block consists of a gated attention
rational quadratic spline (RQS) coupling layer. (c) Example structures of protein G from the flow
qe (left) and from molecular dynamics simulation p (right). We also show sample distance matrices
D(x,,) and D(x,).

Multi-stage training strategy
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Table 1: Training BGs with different strategies. We compute AD, energy u(-), and mean NLL
of 10° generated structures after training with different training strategies with ADP, protein G, and
Villin HP35. AD is computed for batches of 10° samples. Means and standard deviations are
reported. Statistics for u(-) are reported for structures with energy below the median sample energy.
Best results are bold-faced. For reference, the energy for training data structures is —317.5 &= 125.5
kcal/mol for protein G and —1215.5 £ 222.2 kcal/mol for villin HP35. We compare our results
against a Neural Spline Flows (NSF) baseline model.

Training strategy

System Arch. NLL KL W2 AD (A)  Energy u(x) (kcal/mol) —E,(x)[log go (x)]
NSF v 0.094+0.01 (—1.19+0.61) x 10  38.29 +0.19
v 0.084+0.01 (—1.18+0.65) x 10 36.15+0.15
ADP Ours v 0.054+0.01 (—1.20£0.59) x 10*  38.66 £0.19
v v 0.04+£0.00 (—1.06+£0.74) x 101  38.12+0.03
Ous v v v 003+£0.01 (-1.314+0.52) x 101  37.6740.09
NSF v 2.92+0.80 (2.15£3.31) x 101  —263.46 +0.13
v 1.814+0.14  (9.47+15.4) x 1083 —310.11+£0.08
ProteinG Ours v v 16.09 £1.14 (2.86+0.62) x 102 —308.68 & 0.08
v v 0184001 (2.68+£4.31)x10° —307.17£0.01
Ous v v vV 019£0.01 (—3.044+1.24) x 102 —-309.104+0.91
NSF v 0.81+0.06 (7.78 £17.4) x 107 687.95 + 1.92
v 0.65+0.04 (5.29+11.7) x 10°  651.90 & 2.88
HP35 Ours ¢ V 0.61+£0.04  (6.46 & 14.3) x 102 678.38 = 0.87
v v 038+£0.03 (1.15%1.76) x 107 678.31 &+ 1.55
Ous v v vV 039+£0.03 (—4.66+3.52) x 102 667.45 £ 2.04

Results (cont’d)

Definition 3.1 (Distance Distortion). Let .4, denote the indices of backbone atoms. Define D(x) as
the pairwise distance matrix for the backbone atoms of x. Define P = {(¢,5)|%,j € Aw and i < j}.
The distance distortion is defined as

1
AD:= E E : |D(qu )ij — D(Xp)ij ', (3)
Xqg ™o |P| =
Xp~p (%J)EP i
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Figure 3: Sample conformations generated by BG via different training strategies. (a) Root
mean square fluctuation (RMSF) computed for each residue (Ca atoms) in HP35 and protein G.
Matching the training dataset’s plot is desirable. (b) Examples of HP35 from ground truth train-
ing data, generated samples from our model, and generated samples from the baseline model. (c)
Example of two metastable states from protein G training data. (d) Low-energy conformations of
protein G generated by our model superimposed on each other. We also show some examples of
pathological structures generated after training with different training paradigms: NLL (maximum
likelihood), both NLL and KL divergence, and NLL and the 2-Wasserstein loss. Atom clashes are
highlighted with red circles.
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Figure 4: BGs can generate novel sample conformations. (a) Protein G 2D UMAP embeddings
for the training data, test data, and 2 x 10° generated samples. (b) A representative example of
generated structures by the BG model which was not found in training data (cyan) and the closest
structure in the training dataset (magenta) by RMSD. Both structures are depicted as stars with their
respective structural colors in (a). (c) Protein G energy distribution of training dataset (orange) and
samples (blue) generated by our model. The second energy peak of the sampled conformations
covers the novel structure shown in (b). (d) An overlay of high-resolution, lowest-energy all-atom
structures of protein G generated by the BG model. This demonstrates that our model is capable of
sampling low-energy conformations at atomic resolution.
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