
Protein Language Models Enable Accurate Cryptic 
Ligand-Binding Pocket Prediction

David Bloore1, Joseph Kim1,2, Karan Kapoor1, Eric Chen1, Kaifu Gao1, Mengdi Wang2, 
Ming-Hong Hao1. 1 Ensem Therapeutics, 888 Winter St, Waltham, MA 02451.  

2Princeton University, 41 Olden St. Princeton, New Jersey 08544

Accurate prediction of protein-ligand binding pockets is a critical task in protein functional analysis and small 
molecule pharmaceutical design. However, the flexible and dynamic nature of proteins conceal an unknown 
number of potentially invaluable "cryptic" pockets. Current approaches for cryptic pocket discovery rely on 

molecular dynamics (MD), leading to poor scalability and bias. Even recent ML-based cryptic pocket discovery 
approaches require large, post-processed MD datasets to train their models. In contrast, this work presents 
``Efficient Sequence-based cryptic Pocket prediction'' (ESP) leveraging advanced Protein Language Models (a 

target structure, ESP produces more spatially-focused predictions which increase downstream utility.

Summary
Background: Identification of ligand binding pockets is a critical step in structure-based drug 
design. Unlike conventional pockets, which are apparent on protein targets regardless of ligand 
binding status, cryptic pockets only become obvious when a ligand binds. Uncovering cryptic 
pockets offers untapped opportunities for drug discovery. 
Previous work: Many publications have reported identification of conventional ligand binding 
pockets using tools like LIGSite1, Fpocket2, and P2Rank3. For cryptic pocket identification, 
CryptoSite4 and PocketMiner5 (PM) are machine learning-based methods that have reported 
encouraging performance. In particular, PM leveraged a deep-learning model of protein dynamic 
structures to achieve superior performance in predicting protein cryptic pockets.

Objective: Inspired by insights into protein structure & function and protein-ligand interactions 
gleaned by protein language models (PLMs)6,7, this study aimed to investigate the application of 
PLMs to the prediction of cryptic ligand binding pockets.
Results: We developed a PLM-based prediction model that demonstrated high accuracy in 
predicting ligand binding pockets, including cryptic ones. Trained on labeled pocket data from 
PDBBind v2020, our Efficient Sequence-based Prediction (ESP) model achieved high accuracy 
with Area Under the ROC Curve (AUC) equal to 0.93, outperforming PM, which achieved AUC = 
0.87 on the same cryptic pocket testing set.
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target structure, ESP produces more spatially-focused predictions which increase downstream utility.
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Datasets
Protein pocket labels were generated for protein-ligand complex structures in PDBBind8. A total 
of 17,986 protein sequences were labeled. A positive label was assigned to a residue when it 
was within 6 Å of a bound ligand in a protein-ligand complex structure. Negative labels were 
assigned to all other residues. This resulted in a dataset with 495,482 positively labeled pocket 
residues and 4,759,440 negatively labeled non-pocket residues with an average protein 
sequence length of 292 residues. The PM test dataset included 35 protein structures comprising 
563 cryptic pocket residues and 1283 residues that do not form cryptic pockets.
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Results

Table 1: APS and ROCAUC results across architectures for ESP using Anhk-Large embeddings. Training samples 

with greater than 30% sequence identity with validation/testing sets have been removed. 

Table 1: APS and AUC results by different prediction algorithms using Anhk-Large embeddings. 

Training samples with greater than 30% sequence identity with testing sets were removed. 

A B

Figure 2: (A) Receiver-operator curve and (B) Precision Recall curve for the PM model and 
ESP model based on Ankh. With a 30% sequence identify cutoff, ESP achieved higher AUC 
and average precision score (APS) than PM. 
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Figure 4: (A) ESP-predicted and (B) PM-predicted cryptic binding pocket for lactamase (PDBID 
3GQZ) superimposed with bound ligand (crystal structure).

Figure 1. (A) Apo (i.e., ligand-free) structure of NS5B RNA polymerase (1QUV). (B) Ligand-bound 
state of the same protein crystal structure (3VPS) wherein the cryptic pocket becomes obvious.
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Table 1: APS and ROCAUC results across architectures for ESP using Anhk-Large embeddings. Training samples 

with greater than 30% sequence identity with validation/testing sets have been removed. 

Figure 3: Comparison of the performance of ESP model prediction using different PLM 
embeddings, including Ankh, ESM2-15B, ESM-3B, ProtT5-Xl, and ProtBERT. 

Figure 5: Model prediction on the transporter protein FecA. (a) shows ESP inference results, 

(b) shows PM inference results, and (c) shows the labeled pocket residues colored in red.
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prediction of cryptic ligand-binding pockets of proteins in comparison to previously models. The results 
demonstrate that PLMs has effectively learned residue-level information through unsupervised training, which 

significantly correlates with cryptic pocket formation propensity. The future work may further improve the 
accuracy of cryptic pocket prediction by exploring alternative labeling methods and/or by combining PLM- 

embeddings and MD-generated structural descriptions.

This study highlights that protein language models such as Ankh-Large and ESM-2 15B enabled 
more accurate prediction of cryptic ligand binding pockets on protein targets compared to earlier 
deep learning models such as PocketMiner. Our results suggest that the PLMs might have 
learned residue-level information, including the location of cryptic pockets, through 
unsupervised training. To further improve model accuracy, PLM-based sequence embeddings 
with MD-generated structural features could be investigated.
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