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Summary

Background: Identification of ligand binding pockets is a critical step in structure-based drug
design. Unlike conventional pockets, which are apparent on protein targets regardless of ligand
binding status, cryptic pockets only become obvious when a ligand binds. Uncovering cryptic
pockets offers untapped opportunities for drug discovery.

Previous work: Many publications have reported identification of conventional ligand binding
pockets using tools like LIGSite!, Fpocket?, and P2Rank3. For cryptic pocket identification,
CryptoSite* and PocketMiner®> (PM) are machine learning-based methods that have reported
encouraging performance. In particular, PM leveraged a deep-learning model of protein dynamic
structures to achieve superior performance in predicting protein cryptic pockets.

Objective: Inspired by insights into protein structure & function and protein-ligand interactions
gleaned by protein language models (PLMs)®7, this study aimed to investigate the application of
PLMs to the prediction of cryptic ligand binding pockets.

Results: We developed a PLM-based prediction model that demonstrated high accuracy in
predicting ligand binding pockets, including cryptic ones. Trained on labeled pocket data from
PDBBind v2020, our Efficient Sequence-based Prediction (ESP) model achieved high accuracy
with Area Under the ROC Curve (AUC) equal to 0.93, outperforming PM, which achieved AUC =
0.87 on the same cryptic pocket testing set.

Datasets

Protein pocket labels were generated for protein-ligand complex structures in PDBBind3. A total
of 17,986 protein sequences were labeled. A positive label was assigned to a residue when it
was within 6 A of a bound ligand in a protein-ligand complex structure. Negative labels were
assigned to all other residues. This resulted in a dataset with 495,482 positively labeled pocket
residues and 4,759,440 negatively labeled non-pocket residues with an average protein
sequence length of 292 residues. The PM test dataset included 35 protein structures comprising
563 cryptic pocket residues and 1283 residues that do not form cryptic pockets.

Figure 1. (A) Apo (i.e., ligand-free) structure of NS5B RNA polymerase (1QUV). (B) Ligand-bound
state of the same protein crystal structure (3VPS) wherein the cryptic pocket becomes obvious.
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Figure 2: (A) Receiver-operator curve and (B) Precision Recall curve for the PM model and
ESP model based on Ankh. With a 30% sequence identify cutoff, ESP achieved higher AUC
and average precision score (APS) than PM.
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Figure 4: (A) ESP-predicted and (B) PM-predicted cryptic binding pocket for lactamase (PDBID
3GQZ) superimposed with bound ligand (crystal structure).

Conclusion

This study highlights that protein language models such as Ankh-Large and ESM-2 15B enabled
more accurate prediction of cryptic ligand binding pockets on protein targets compared to earlier
deep learning models such as PocketMiner. Our results suggest that the PLMs might have
learned residue-level information, including the location of cryptic pockets, through
unsupervised training. To further improve model accuracy, PLM-based sequence embeddings
with MD-generated structural features could be investigated.
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Training:
def train(training_set, num_attn_head, epoch):
for e in range(epoch):
predict=MHA_model(training_set, num_attn_head)
loss=cross_entropy_loss (label, predict)
backpropagation to update model weights
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Predicting;
def predict(sequences):
load pretrained MHA_model

Input protein sequences .
return pretrained_MHA_model(sequences)

Results

Table 1: APS and AUC results by different prediction algorithms using Anhk-Large embeddings.
Training samples with greater than 30% sequence identity with testing sets were removed.
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Figure 3: Comparison of the performance of ESP model prediction using different PLM
embeddings, including Ankh, ESM2-15B, ESM-3B, ProtT5-XIl, and ProtBERT.

(a) IKMO ESP inference.

Figure 5: Model prediction on the transporter protein FecA. (a) shows ESP inference results,

(b) IKMO PM inference.

(c) IKMO PM labels.

(b) shows PM inference results, and (c) shows the labeled pocket residues colored in red.
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